Correlating boiling points of fluorinated amines

Alfred A. Woolf

Department of Science, Bristol Polytechnic, Bristol BS16 1QY (UK)

(Received June 27, 1991; accepted August 12, 1991)

Abstract

The elevations of boiling point (Δ) when NH or NR groups are inserted into alkanes, and NR_t into perfluoroalkanes, are linearly related to the mass ratios (R) before and after insertion by $\Delta = A + BR$ where A and B are nearly equal constants for each series, resulting in a convergence of boiling points of amine and alkane on extrapolation to long chain length (R=1). This does not hold for NCF₃ insertion into the C-C bonds of alkanes. Instead members of the CF₃NRR' series are predicted to boil below those of the corresponding alkanes containing more than 14 carbon atoms. It is suggested that the difference in behaviour of NCF₃ and NCH₃ insertions is due to the presence of dipoles of opposite polarity in the mixed alkyl-perfluoroalkyl amines. NF insertions into $R_t - R_t'$ and $R_t - F$ give non-linear relations. However NF, as well as CO, behave as pseudo CF₂ groups when considering their effect on the boiling points of perfluoroalkanes.

Introduction

Fluorinated amines can be divided into the inert perfluorinated amines $N(R_t)_a$ resembling perfluoroalkanes in stability; $(R_t)_a NF$ and $R_t NF_a$ regarded as NF_3 derivatives; and the mixed alkyl-perfluoro or polyfluoroalkyl amines typified by the N-trifluoromethyl-dialkyl amines used as fluorinating agents, in which, surprisingly, the CF_3 groups are easily hydrolysed [1–3]. In a recent survey of boiling points (b.p.s) in homologous series, formed hypothetically by inserting small entities into C-H or C-C bonds in alkanes, a simple relation emerged between the elevation of the alkanes' b.p. (Δ) after insertion and the relative masses (R) before and after insertion, viz. $\Delta = A + BR$. In most instances this approximates to $\Delta = A(1-R)$ where A and B are constants for a particular series [4]. The elevation is ascribed to the intermolecular association of the dipoles formed on insertion, the effect of which diminishes as the chain lengthens. The predominant dipolar attractions are isolated from the van der Waal's ones by taking the alkanes as the reference series. In the normal series the increase in b.p. is proportional to the amount of dipole present. In the limit, the dipole effect should vanish at R = 1 if A = -B. (The precision in b.p. data, and the required extrapolation, limits this equality. Generally correlation coefficients r are -0.998 or better, and (A+B) values are zero within 10° limits). Deviations from this behaviour reveal the presence of other forces. Thus with alcohols and diols, and less so for dithiols, deviations from linearity show the additional effect of hydrogen bonding. Another deviation from linearity encountered with bromofluorides has also been described [5]. It was hoped that an examination of b.p. relations in amine series might throw some light on the above mentioned differences between the fluorinated amines.

Results and discussion

The genesis of some amines is indicated in Table 1.

Good linear relations are found for NH insertions into alkanes, e.g. $\Delta = 326.1 - 333.3R$ for NH into R-R holds with the available data up to C₁₆ with r = -0.998. The relation $\Delta = 262.1 - 262.3R$ (r = -0.999) for NMe into R-H is shown in Fig. 1 with the extrapolation back to insertion into H-H to form methylamine. Similarly NR_f insertions into perfluoroalkanes give linear relations. The NC₂F₅ insertion, which yields $\Delta = 200.5 - 199.5R$ (r = -0.9995) in Fig. 2 and Table 2 can also be extrapolated back to an insertion into F-F. The extrapolated b.p. of C₂F₅NF₂ is 156 °C compared with the experimental value of 150 °C.

Insertion of NCF₃ into C–C alkane bonds is compared with the corresponding insertion of NCH₃ in Fig. 3. The latter is fitted by $\Delta = 181.8 - 171.2R$

TABLE 1

Formation of amines by NX insertion into hydro- or fluoro-carbons

Insertion	Bond to be inserted					
	$R-H, R_{f}-H$	$R-R', R_f-R_f'$	$R_f - F$			
NH	primary	secondary				
NR, NR _f	secondary	tertiary	tertiary			
NF		tertiary	tertiary			

Fig. 1. Elevations of b.p. (Δ) on insertion of NMe into R-H bonds plotted versus mass ratio (R). 1, MeNH₂; 2, Me₂NH; 3, Et₂NH; 4, Pr₂NH; 5, Bu₂NH.

Fig. 2. Elevations of b.p. (Δ) on insertion of NC₂F₅ into R_t-R' bonds plotted versus mass ratio (*R*). See Table 2 for numbering of perfluoroamines.

 R.F	B.p. (°C)	a	R.R. NC 2F5	B.p. (°C)	Δ	R ^b
C_2F_6	-78.7	1	$(CF_3)_2NC_2F_5$	20.5	99.2	0.509
C_3F_8	-37.5	2	$C_2F_5CF_3NC_2F_5$	46	83.5	0.586
$C_{4}F_{10}$	-1.3	3	$(C_2F_5)_2NC_2F_5$	70.3	71.6	0.642
$C_{5}F_{12}$	29.3	4	$C_3F_7C_2F_5NC_2F_5$	93	63.7	0.684
C_0F_{14}	57.2	6	$(C_3F_7)_2NC_2F_5$	114	57.0	0.718
		5	$C_4F_9C_2F_5NC_2F_5$	115	58.0	0.718

TABLE 2 Elevation of b.p.s (Δ) on insertion of NC₂F₅ into R_r-R_r' bonds

"Numbering in Fig. 2.

^bRMM ratio for $R_f F/R_f R_f NC_2 F_5$; R for $F_2/C_2 F_5 NF_2 = 0.222$.

Fig. 3. Elevations of b.p. (Δ) on insertion of NMe and NCF₃ into R-R bonds plotted versus mass ratio (R). See Table 3 for numbering of N-trifluoromethyl amines (1-7). 1', NMe₃; 2', NMe₂Et; 3', NMeEt₂; 4', NMe₂C₅H₁₁; 5', NMe₂C₆H₁₃. The arrows indicate the R values for tetra- and hexa-decanes.

TABLE 3

Elevation of b.p.s (Δ) on insertion of NCF₃ into R-R bonds

Alkane	B.p. (°C)	a	N-Trifluoro- methyl amine	B.p. (°C)	Δ	R
C ₂ H ₆	-88.6	1	(CH ₃) ₂ NCF ₃	20	108.6	0.266
C ₄ H ₁₀	-0.5	2	$(C_2H_5)NCF_3$	71	71.5	0.412
cyclopentane	50	3	(CH ₂) ₅ NCF ₃	107	57	0.458
cvclohexane	81	4	(CH ₂) ₆ NCF ₃	133	52	0.503
Pr ¹ / ₂	58	5	Pr ¹ ₂ NCF ₃	109	51	0.509
Bu ¹ ₂	109.4	6	Bu ¹ ₂ NCF ₃	143	33.6	0.579
1,1,2,2-tetra- methyl cyclopentane	142 ^b	7	[Me ₂ C(CH ₂) ₃ CMe ₂]NCF ₃	171	29	0.603

^aNumbering in Fig. 3.

^bEstimated from other cyclopentane values.

(r = -0.999). However, NCF₃ insertion, admittedly with a more varied set including cycloalkanes (Table 3), while still linear ($\Delta = 169.0 - 234.3R$) differs in having a very negative Δ value of -65.3 at R = 1 which implies that

members of the CF_3NRR' series will have lower b.p.s than the corresponding alkanes with more than 14 carbons. This distinctive behaviour has not been previously encountered with any other linear series. A possible explanation is that only the mixed alkyl-perfluoroalkyl amines possess dipoles of opposite

polarity $(N-R \text{ and } N-CF_3)$. The overall dipolar effect decreases to zero before reversing leading to a zero elevation before R=1. The influence of the CF₃ group seems to predominate in the present series of compounds as evidenced by the loss of nitrogen basicity inhibiting adduct formation with BF₃. However, the effect of the N-CF₃ dipole should decrease as the alkane chains lengthen. It would be instructive to examine compounds containing 16 or more alkane carbons, corresponding with the crossover point in Fig. 3, to see whether there is any basicity change perhaps using a 'super' proton acid system at low temperature as a more sensitive indicator than the simple Lewis acid. The susceptibility to hydrolysis and the fluorinating ability may also change.

Finally NF insertions into $R_f - F$ and $R_f - R_f'$ bonds produce non-linear relations. However, the b.p.s of the R_fNF_2 or R_fNFR_f' series, as previously observed, correspond quite closely with those of the next higher perfluoro homologues, *i.e.* $R_fNF_2 \equiv R_fCF_3$ and $R_fNFR_f' \equiv R_fCF_2R_f'$. In this respect NF, CO or a combination of both as in $R_fR_f'NCOF$, behave as pseudo CF_2 groups possibly because they are isoelectronic, but not isostructural, if only valency electrons are counted $(\sum_{i=1}^{5} + \sum_{i=1}^{4} + 2)$ (e.g. $C_5F_{11}NF_2$, 57.5°; C_6F_{14} ,

electrons are counted ($\N-F$; $\C=O$; \CF_2) (e.g. $C_5F_{11}NF_2$, 57.5°; C_6F_{14} , 57.2°: $C_3F_7COCF_3$, 29.8°; $C_2F_5COC_2F_5$, 27°; C_6F_{12} , 29.3: and $(C_2F_5)_2NCOF$, 59°; $C_3F_7CF_3NCOF$, 58°; C_6F_{14} , 57.2°). This treatment can be extended to $N(R_f)_3$ amines where the b.p.s of n-perfluoroalkanes formed by replacing N by CF lie 10° higher, e.g. $N(C_3F_7)_2C_2F_5$, 115°; C_9F_{20} , 125.3°: $N(CF_3)_3$, -10.5°; C_4F_{10} , -1.3°:, etc. Similar isoelectronic equivalence is encountered between the R_fSO_2F and R_fSF_5 series, in this instance with 10e SO₂ and SF₄ groups as insertions.

References

- 1 R. J. Harder and W. C. Smith, J. Am. Chem. Soc., 83 (1961) 3422.
- 2 W. Dmowski and M. Kaminski, J. Fluorine Chem., 23 (1983) 207.
- 3 G. Pawelke, J. Fluorine Chem., 52 (1991) 229.
- 4 A. A. Woolf, Chem. Ind. (London), (1991) 96.
- 5 A. A. Woolf, J. Fluorine Chem., 46 (1990) 255.